Generalized Category Discovery with Decoupled Prototypical Network

Wenbin An^{1,3}, Feng Tian^{2,3}, Qinghua Zheng^{2,3}, Wei Ding⁴, QianYing Wang⁵, Ping Chen⁶

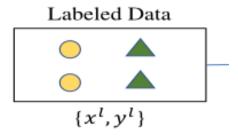
School of Automation Science and Engineering, Xi'an Jiaotong University
School of Computer Science and Technology, Xi'an Jiaotong University
National Engineering Laboratory for Big Data Analytics
Department of Computer Science, University of Massachusetts Boston
Lenovo Research
Department of Engineering, University of Massachusetts Boston
Wenbinan@stu.xjtu.edu.cn, {fengtian,qhzheng}@mail.xjtu.edu.cn

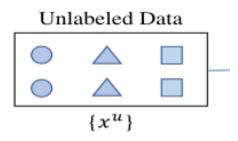
{wei.ding,Ping.Chen}@umb.edu, wangqya@lenovo.com

(AAAI-2023)

code: https://github.com/Lackel/DPN

- 1. Introduction
- 2. Approach
- 3. Experiments





Generalized Category Discovery

limitation

- Without considering differences between known and novel categories, current methods learn about them in a coupled manner, which can hurt model's generalization and discriminative ability.
- the coupled training approach prevents these models transferring category-specific knowledge explicitly from labeled data to unlabeled data, which canlose high-level semantic information and impair model performance.

Introduction

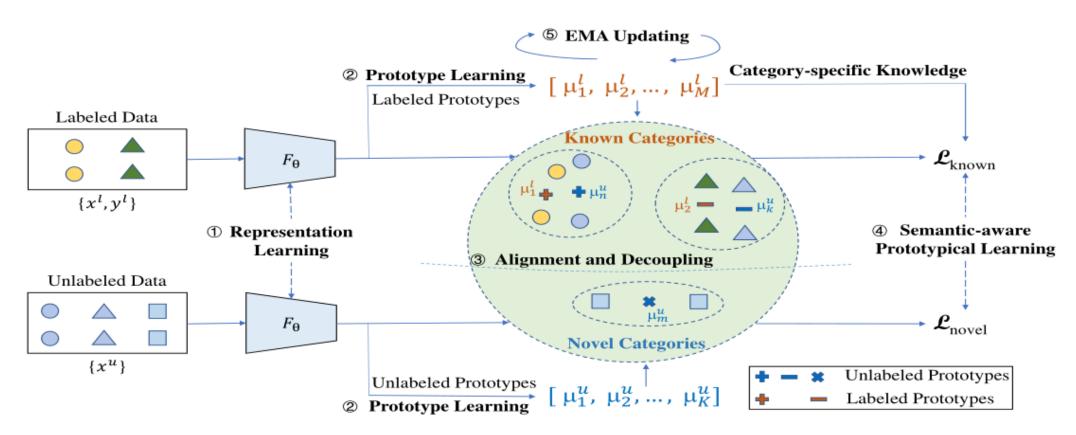
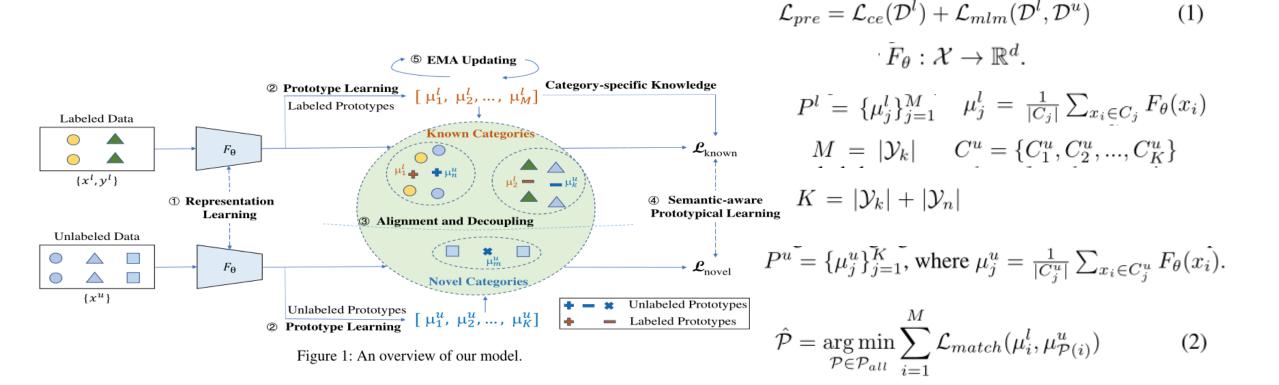



Figure 1: An overview of our model.

(3)

Approach

 $\mathcal{L}_{match}(\mu_i^l, \mu_{\mathcal{P}(i)}^u) = \left\| \mu_i^l - \mu_{\mathcal{P}(i)}^u \right\|_2$

(6)

Approach

Unsupervised Learning for Novel Categories.

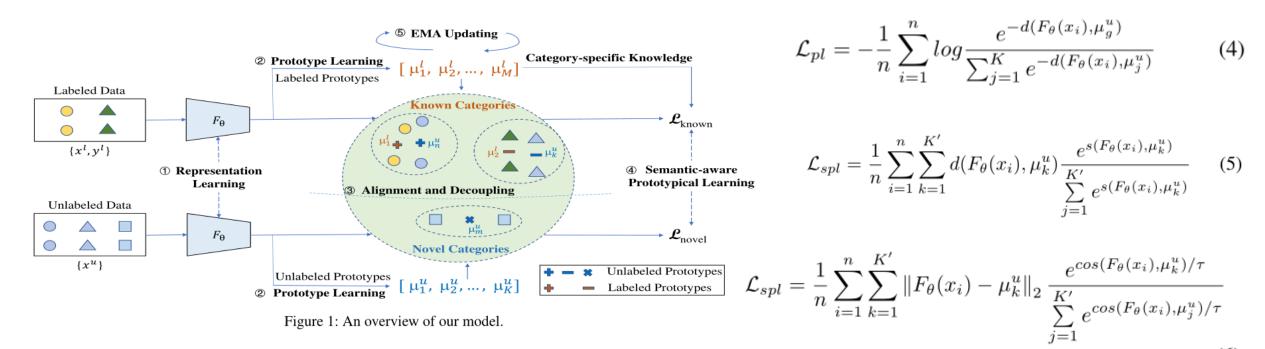
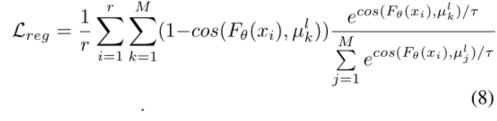



Figure 1: An overview of our model.

$$\mathcal{L}_{novel} = \mathcal{L}_{spl}(\mathcal{D}^{un}, P^{un}) \tag{7}$$

Approach

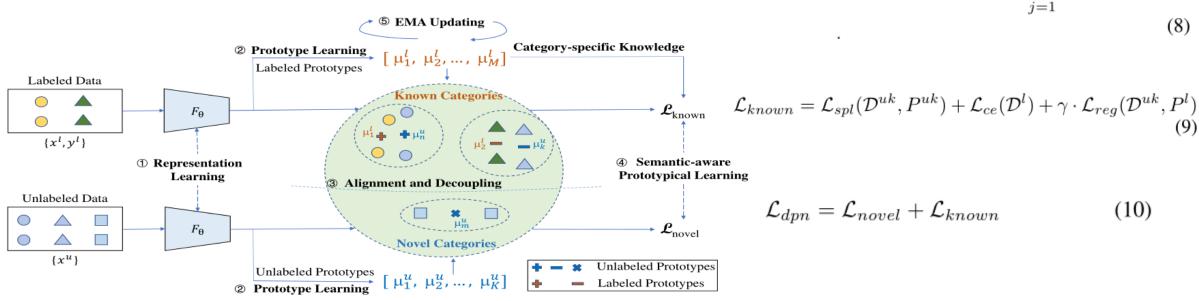


Figure 1: An overview of our model.

$$\mathcal{P}_{t+1}^l \leftarrow \alpha \cdot \mathcal{P}_t^l + (1 - \alpha) \cdot \mathcal{P}_{t+1}^l \tag{11}$$

Dataset	$ \mathcal{Y}_k $	$ \mathcal{Y}_n $	$ \mathcal{D}^l $	$ \mathcal{D}^u $	$ \mathcal{D}^t $
BANKING	58	19	673	8,330	3,080
StackOverflow	15	5	1,350	16,650	1,000
CLINC	113	37	1,344	16,656	2,250

Table 1: Statistics of datasets. $|\mathcal{Y}_k|$, $|\mathcal{Y}_n|$, $|\mathcal{D}^l|$, $|\mathcal{D}^u|$ and $|\mathcal{D}^t|$ represent the number of known categories, novel categories, labeled data, unlabeled data and testing data, respectively.

Method	BANKING			StackOverflow			CLINC		
Tricino d	All	Known	Novel	All	Known	Novel	All	Known	Novel
DeepCluster	13.95	13.94	13.99	17.37	18.22	14.80	26.92	27.34	25.67
DCN	17.85	18.94	14.35	29.10	28.94	29.51	29.64	30.00	28.45
DEC	19.30	20.36	15.84	19.30	20.36	15.84	19.99	20.18	19.40
BERT	21.29	21.48	20.70	16.80	16.67	17.20	34.52	34.98	33.16
KM-GloVe	29.18	29.11	29.39	28.40	28.60	28.05	51.64	51.74	51.50
AG-GloVe	30.09	29.69	31.29	29.23	28.49	31.56	44.70	45.17	43.20
SAE	38.05	38.29	37.27	60.33	57.36	69.02	46.59	47.35	44.24
Semi-DC	50.73	53.37	42.63	64.90	66.13	61.20	74.52	75.60	71.34
CDAC+	53.09	55.42	46.01	76.67	77.51	74.13	69.75	70.08	68.77
Self-Labeling	56.19	61.64	39.56	71.03	78.53	48.53	72.69	80.06	49.65
DTC	56.56	59.98	46.10	70.50	80.93	51.87	76.42	82.34	58.95
DAC	63.63	69.60	45.44	70.77	76.13	54.67	84.42	89.10	70.59
Semi-KM	66.23	73.62	43.68	73.13	81.02	49.47	81.42	89.03	59.01
LASKM	67.55	75.16	44.34	74.83	82.00	53.33	79.26	89.64	48.66
DPN (Ours)	72.96	80.93	48.60	84.23	85.29	81.07	89.06	92.97	77.54
Improvement	+5.41	+5.77	+2.50	+7.56	+3.29	+6.94	+4.64	+3.33	+6.20

Table 2: Model comparison results (%) on testing sets. Average results over 3 runs are reported.

Model	All	Known	Novel
Ours	84.23	85.29	81.07
w/o Cross Entropy w/o EMA w/o Decoupling w/o Soft Assignment	83.83 82.50 78.77 75.10	85.02 83.87 78.53 75.33	80.26 78.40 79.47 74.40
w/o Semantic Weights	35.70	33.73	41.60

Table 3: Results (%) of different model variants.



Figure 2: Distances between 15 labeled prototypes and 20 aligned unlabeled prototypes. Darker colors represent closer distances.

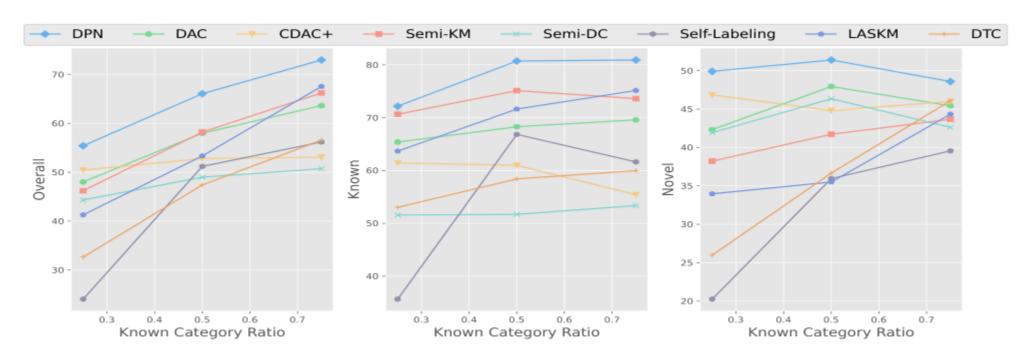


Figure 3: Effect of known category ratio on the BANKING dataset.

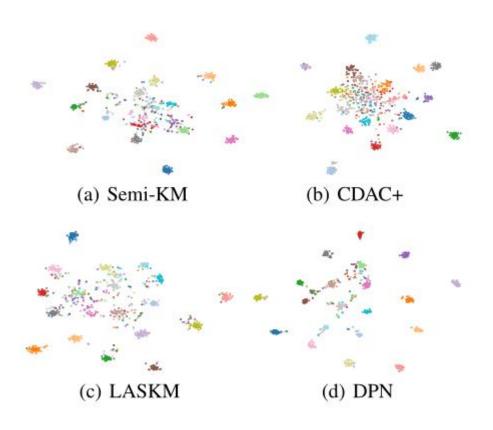


Figure 4: The t-SNE visualizations of embeddings.

	CLINC	BANKING	StackOverflow
Ground Truth	150	77	20
DAC	130	66	15
Ours	137	67	18
Error	8.7%	13.0%	10.0%

Table 4: Estimation of the number of categories.

Thank you!